
LINUX - ANLINUX - AN
INTRODUCTION TOINTRODUCTION TO

SOME BASIC UTILITIESSOME BASIC UTILITIES

THE UNIX PHILOSOPHYTHE UNIX PHILOSOPHY
simple tools
each doing one job well
compose them in a pipeline and you have a
powerful language.

Topics:
1. execu�ng bash scripts (posi�onal parameters)
2. redirec�on
3. pipes/pipelines
4. filtering data
5. sed ("stream edi�ng")

We can either
1. type linux commands on the commandline, or
2. type them in files,

make those files executable,
and run them as shell scripts.

For reusability, we'll focus on scripts.For reusability, we'll focus on scripts.

SHELL SCRIPTSSHELL SCRIPTS
Today we're using the bash shell.

You should see

or

 $ echo $SHELL

 $ /bin/bash

 $ /usr/bin/bash

A bash script is just a sequence of bash commands
with a special first line:

The first line begins with "#!" ("shebang"), The first line begins with "#!" ("shebang"), followed byfollowed by
the path to the program which is to execute thethe path to the program which is to execute the

remaining code, namely remaining code, namely bashbash..

File append_the_date.sh:
 #!/usr/bin/bash
 filename=$1 #read first positional parameter from commandline
 DATESTAMP=$(date +%y_%m_%d)
 mv $filename ${filename}_${DATESTAMP}
 echo "$filename moved to ${filename}_${DATESTAMP}"

 $ which bash # to find the path to bash
 /usr/bin/bash

To run (execute) the commands in the file , make the
file executable:

and invoke it by sta�ng its name (or path to its name),
followed by any expected parameters

 $ chmod u+x append_the_date.sh
 $ ls -lt append_the_date.sh
 -rwxr--r-- 1 akea013 akea013 187 Sep 3 10:28 append_the_date.sh

 $./append_the_date.sh your_filename_here

The parameters you provide a�er the script name
are called "posi�onal parameters"
they are available in the script in the order
provided as $1, $2, etc. up to $9

SHELL FUNCTIONSSHELL FUNCTIONS
To reuse this code from other code, make it a func�on:

Source it so that the func�on is in the shell's
namespace, and use it:

 contents of file append_the_date_function.sh

 # call as append_datestamp file_name
 function append_datestamp(){
 filename=$1 #read file_name from commandline
 DATESTAMP=$(date +%y_%m_%d)
 mv $filename ${filename}_$DATESTAMP
 echo "$filename moved to ${filename}_${DATESTAMP}"
 }

 $ source append_the_date_function.sh # or replace source by .
 $ append_datestamp your_filename_here

TIPTIP

put your bash func�ons in a file, e.g.
~/bin/some_bash_func�ons_file, source that file from

your ~/.bashrc file:

and you can use them anywhere.

 #line in .bashrc file
 source $HOME/bin/some_bash_functions_file

Bash programming constructs:
 $ help
 $ help for
 $ help while
 $ help if

 $ help

 job_spec [&] history [-c] [-d offset] [n] or >
 ((expression)) if COMMANDS; then COMMANDS; [el>
 . filename [arguments] jobs [-lnprs] [jobspec ...] or j>
 : kill [-s sigspec | -n signum | ->
 [arg...] let arg [arg ...]
 [[expression]] local [option] name[=value] ...
 alias [-p] [name[=value] ...] logout [n]
 bg [job_spec ...] mapfile [-d delim] [-n count] [->
 bind [-lpsvPSVX] [-m keymap] [-f > popd [-n] [+N | -N]
 break [n] printf [-v var] format [argument>
 builtin [shell-builtin [arg ...]> pushd [-n] [+N | -N | dir]
 caller [expr] pwd [-LP]
 case WORD in [PATTERN [| PATTERN]> read [-ers] [-a array] [-d delim>
 cd [-L|[-P [-e]] [-@]] [dir] readarray [-d delim] [-n count] >
 command [-pVv] command [arg ...] readonly [-aAf] [name[=value] ..>
 compgen [-abcdefgjksuv] [-o optio> return [n]
 complete [-abcdefgjksuv] [-pr] [-> select NAME [in WORDS ... ;] do >
 compopt [-o|+o option] [-DEI] [na> set [-abefhkmnptuvxBCHP] [-o opt>
 continue [n] shift [n]

 coproc [NAME] command [redirectio> shopt [-pqsu] [-o] [optname ...]
 declare [-aAfFgilnrtux] [-p] [nam> source filename [arguments]
 dirs [-clpv] [+N] [-N] suspend [-f]
 disown [-h] [-ar] [jobspec ... | > test [expr]
 echo [-neE] [arg ...] time [-p] pipeline
 enable [-a] [-dnps] [-f filename]> times
 eval [arg ...] trap [-lp] [[arg] signal_spec ..>
 exec [-cl] [-a name] [command [ar> true
 exit [n] type [-afptP] name [name ...]
 export [-fn] [name[=value] ...] o> typeset [-aAfFgilnrtux] [-p] nam>
 false ulimit [-SHabcdefiklmnpqrstuvxPT>
 fc [-e ename] [-lnr] [first] [las> umask [-p] [-S] [mode]
 fg [job_spec] unalias [-a] name [name ...]
 for NAME [in WORDS ...] ; do COM> unset [-f] [-v] [-n] [name ...]
 for ((exp1; exp2; exp3)); do CO> until COMMANDS; do COMMANDS; do>
 function name { COMMANDS ; } or n> variables - Names and meanings o>
 getopts optstring name [arg] wait [-fn] [id ...]
 hash [-lr] [-p pathname] [-dt] [n> while COMMANDS; do COMMANDS; do>
 help [-dms] [pattern ...] { COMMANDS ; }

 $ help for

for: for NAME [in WORDS ...] ; do COMMANDS; done
 Execute commands for each member in a list.

 The `for' loop executes a sequence of commands for each member in a
 list of items. If `in WORDS ...;' is not present, then `in "$@"' is
 assumed. For each element in WORDS, NAME is set to that element, and
 the COMMANDS are executed.

 Exit Status:
 Returns the status of the last command executed.

 $ help while

while: while COMMANDS; do COMMANDS; done
 Execute commands as long as a test succeeds.

 Expand and execute COMMANDS as long as the final command in the
 `while' COMMANDS has an exit status of zero.

 Exit Status:
 Returns the status of the last command executed.

 $ help if

if: if COMMANDS; then COMMANDS; [elif COMMANDS; then COMMANDS;]... [els
 Execute commands based on conditional.

 The `if COMMANDS' list is executed. If its exit status is zero, then
 `then COMMANDS' list is executed. Otherwise, each `elif COMMANDS' lis
 executed in turn, and if its exit status is zero, the corresponding
 `then COMMANDS' list is executed and the if command completes. Otherw
 the `else COMMANDS' list is executed, if present. The exit status of
 entire construct is the exit status of the last command executed, or z
 if no condition tested true.

 Exit Status:
 Returns the status of the last command executed.

REDIRECTIONREDIRECTION
By default, the shell

1. reads input from the keyboard
2. writes output to the terminal
3. writes error messages to the terminal

Redirec�on allows us to designate other sources andRedirec�on allows us to designate other sources and
targets.targets.

REDIRECTION EXAMPLESREDIRECTION EXAMPLES
 $ command > filename # capture output to file
 $ command < filename # take input from file
 $ command >> filename # append output to file

The following code generates some data, and
increments it:

No�ce that the value of the variable "number" isNo�ce that the value of the variable "number" is
$number$number

 #!/bin/bash
for number in $(seq 1 20);
 do
 let increment=$number+1;
 echo "$number + 1 = $increment"
 done

Say our input data was in a file :

We can read it from the file into the script with

1. writes the numbers 1..20 to file count_to_twenty
2. reads them sequen�ally into the variable number
3. increments them and writes to screen

 $ seq 1 20 > count_to_twenty

 #!/bin/bash
 while read number
 do
 let increment=$number+1;
 echo "$number + 1 = $increment"
 done < count_to_twenty

PIPELINESPIPELINES
The pipe symbol is "|".

The sequence of opera�ons

can be replaced by

The output of the first command is used as input to
the second.

 $ command1 > filename
 $ command2 < filename
 $ rm filename

 $ command1 | command2

The previous incremen�ng code is equivalent to the
pipeline

 #!/bin/bash
seq 1 20 |
while read number
do
 echo "$number + 1 = $(($number+1))"
done

PIPELINE EXAMPLES WITH SOMEPIPELINE EXAMPLES WITH SOME
FILTERINGFILTERING

$ cat data_file | sort | uniq # uniq lines of an unsorted text file
$ cat data_file | sort | uniq -d # duplicate lines of unsorted text f
$ history | tail -n 100 # last 100 lines of history file
$ history | grep git | tail -n 100 # last 100 lines of history file con
$ ls -lt | awk '{print $5,"\t", $9}' | sort -rn|head # show directory con
#apply to 5th and 9th fields of ls -lt output, size and name
$ ls -lt | awk '{printf("%d\t%s\n",$5, $9)} | sort -rn # alternative form

SED THE STREAM EDITORSED THE STREAM EDITOR
What's a stream editor? -

1. put the edi�ng commands in one file,
2. apply them to any set of files

Note: sed uses regular expressions to match strings.Note: sed uses regular expressions to match strings.

Contents of sed file, replace_string.sh:

The -i does a live change. Leave it off and the
changes are sent to screen, not to file.
Using -i.bak overwrites the file and copies the
original to a backup, to filename.bak
The last line, uncommented, descends this
directory and finds all files of this filetype in all
subdirectories and makes this given subs�tu�on.

 #!/usr/bin/bash
 # replace all occurrences of $1 with $2 in files named *.$3
 STRING=$1
 REPLACEMENT_STRING=$2
 FILETYPE=$3
 find . -name '*.${FILETYPE}' -exec grep -l $STRING {} \; #show files
 find . -name '*.${FILETYPE}' -exec grep $STRING {} \; #show occurrence
 sed -e "s/$STRING/${REPLACEMENT_STRING}/g" *.${FILETYPE} {} \; #show re
 sed -i.bak -e "s/$STRING/${REPLACEMENT_STRING}/g" *.${FILETYPE} {} \; #
 #find . -name '*.${FILETYPE}' -exec sed -i.bak -e "s/$STRING/${REPLACEM

To replace the string "first" with the string "second" in
all csv files found in this directory:

 $ chmod u+x replace_string.sh
 $./replace_string.sh first second csv

TIPSTIPS
1. the echo command is your print statement
2. the "#" symbol is a comment

document your code,
comment out failing parts while you build it
up

CAVEATSCAVEATS
1. the bash shell treats single and double quotes

differently
2. some bash variables need to be either quoted or

enclosed in braces to be captured correctly

LINKSLINKS

system documenta�on

/usr/share/doc/ packages
supplementary documenta�on packages: e.g.
gawk-doc

So�ware carpentry shell scrip�ng

 $ man bash

 $ help

 $ apropos your_term_here

https://swcarpentry.github.io/shell-novice/06-script/index.html

LINKS CONTINUEDLINKS CONTINUED
,

download from
 by Neal

Stephenson - an early history of windows, Mac
and linux

Advanced bash scrip�ng guide
abs on sourceforge

in the beginning was the command line

https://tldp.org/LDP/abs/html/
http://localhost:8000/freshmeat.sourceforge.net/projects/advancedbashscriptingguide/
http://cristal.inria.fr/~weis/info/commandline.html

Thank you.

