LINUX - AN
INTRODUCTION T0
SOME BASIC UTILITIES

THE UNIX PHILOSOPHY

e simple tools

e each doing one job well

e compose them in a pipeline and you have a
powerful language.

Topics:
1. executing bash scripts (positional parameters)
2. redirection
3. pipes/pipelines
4. filtering data
5. sed ("stream editing")

We can either
1. type linux commands on the commandline, or
2. e type themin files,
e make those files executable,
e and run them as shell scripts.

For reusability, we'll focus on scripts.

SHELL SCRIPTS

Today we're using the bash shell.

$ echo $SHELL

You should see

$ /bin/bash

or

$ /usr/bin/bash

A bash script is just a sequence of bash commands
with a special first line:

File append the date.sh:

#1/usr/bin/bash

filename=%$1 #read first positional parameter from commandline
DATESTAMP=$(date +%y_%m_%d)

mv $filename ${filename}_${DATESTAMP}

echo "$filename moved to ${filename}_ S${DATESTAMP}"

The first line begins with "#!" ("shebang"), followed by
the path to the program which is to execute the
remaining code, namely bash.

$ which bash # to find the path to bash
/usr/bin/bash

To run (execute) the commands in the file , make the
file executable:

$ chmod u+x append_the_date.sh
$ 1s -1t append_the_date.sh
-rwxr--r-- 1 akea0l1l3 akea0@l1l3 187 Sep 3 10:28 append_the_date.sh

and invoke it by stating its name (or path to its name),
followed by any expected parameters

$./append_the_date.sh your_filename_here

e The parameters you provide after the script name
are called "positional parameters"

e they are available in the script in the order
provided as $1, $2, etc. up to $9

SHELL FUNCTIONS

To reuse this code from other code, make it a function:

contents of file append the date function.sh

call as append_datestamp file_name
function append_datestamp(){
filename=$1 #read file_name from commandline
DATESTAMP=$(date +%y_%m_%d)
mv $filename ${filename}_$DATESTAMP
echo "$filename moved to ${filename}_ S${DATESTAMP}"

Source it so that the function is in the shell's
namespace, and use it:

$ source append_the_date_function.sh # or replace source by .
$ append_datestamp your_filename_here

TIP

put your bash functions in a file, e.g.
~/bin/some_bash functions_file, source that file from
your ~/.bashrc file:

#1line 1n .bashrc file
source $HOME/bin/some_bash_functions_file

and you can use them anywhere.

Bash programming constructs:

$ help

job spec [&]
((expression))
. filename [arguments]

[arg...]

[[expression]]

alias [-p] [name[=value] ...]

bg [job spec ...]

bind [-1psvPSVX] [-m keymap] [-f >
break [n]

builtin [shell-builtin [arg ...]>
caller [expr]

case WORD in [PATTERN [| PATTERN]>
cd [-L|[-P [-e]] [-@]] [dir]
command [-pVv] command [arg ...]
compgen [-abcdefgjksuv] [-0 optio>
complete [-abcdefgjksuv] [-pr] [->
compopt [-o0|+0 option] [-DEI] [na>
continue [n]

history [-c] [-d offset] [n] or >
if COMMANDS; then COMMANDS; [el>
jobs [-lnprs] [jobspec ...] or j>
kill [-s sigspec | -n signum | ->
let arg [arg ...]

local [option] name[=value]
logout [n]

mapfile [-d delim] [-n count] [->
popd [-n] [+N | -N]

printf [-v var] format [argument>
pushd [-n] [+N | -N | dir]

pwd [-LP]

read [-ers] [-a array] [-d delim>
readarray [-d delim] [-n count] >
readonly [-aAf] [name[=value] ..>
return [n]

select NAME [in WORDS ... ;] do >
set [-abefhkmnptuvxBCHP] [-0 opt>
shift [n]

coproc [NAME] command [redirectio>
declare [-aAfFgilnrtux] [-p] [nam>
dirs [-clpv] [+N] [-N]

disown [-h] [-ar] [jobspec ... | >
echo [-neE] [arg ...]

enable [-a] [-dnps] [-f filename]>
eval [arg ...]

exec [-cl] [-a name] [command [ar>
exit [n]

export [-fn] [name[=value] ...] o>
false

fc [-e ename] [-1lnr] [first] [las>
fg [job spec]

for NAME [in WORDS ...] ; do COM>
for ((expl; exp2; exp3)); do CO>
function name { COMMANDS ; } or n>
getopts optstring name [arg]

hash [-lr] [-p pathname] [-dt] [n>
help [-dms] [pattern ...]

shopt [-pqsu] [-o] [optname ...]
source filename [arguments]
suspend [-Tf]

test [expr]

time [-p] pipeline

times

trap [-1p] [[arg] signal spec ..>
true

type [-afptP] name [name ...]
typeset [-aAfFgilnrtux] [-p] nam>
ulimit [-SHabcdefiklmnpgrstuvxPT>
umask [-p] [-S] [mode]

unalias [-a] name [name ...]
unset [-f] [-v] [-n] [name ...]
until COMMANDS; do COMMANDS; do>
variables - Names and meanings o>
wait [-fn] [id ...]

while COMMANDS; do COMMANDS; do>
{ COMMANDS ; }

$ help for

for: for NAME [in WORDS ...] ; do COMMANDS:; done
Execute commands for each member in a list.

The "for' loop executes a sequence of commands for each member in a
list of items. If “in WORDS ...;' is not present, then “in "$@"' 1is
assumed. For each element in WORDS, NAME is set to that element, and
the COMMANDS are executed.

Exit Status:
Returns the status of the last command executed.

$ help while

while: while COMMANDS; do COMMANDS; done
Execute commands as long as a test succeeds.

Expand and execute COMMANDS as long as the final command in the
"while' COMMANDS has an exit status of zero.

Exit Status:
Returns the status of the last command executed.

$ help if

if:

if COMMANDS: then COMMANDS; [elif COMMANDS:; then COMMANDS;]... [els
Execute commands based on conditional.

The "if COMMANDS' list is executed. If its exit status is zero, then
“then COMMANDS' 1list is executed. Otherwise, each "elif COMMANDS' 1is
executed in turn, and if its exit status is zero, the corresponding
“then COMMANDS' list is executed and the if command completes. Otherw
the "else COMMANDS' list is executed, if present. The exit status of
entire construct is the exit status of the last command executed, or z
if no condition tested true.

Exit Status:
Returns the status of the last command executed.

REDIRECTION

By default, the shell
1. reads input from the keyboard
2. writes output to the terminal
3. writes error messages to the terminal

Redirection allows us to designate other sources and
targets.

REDIRECTION EXAMPLES

$ command > filename # capture output to file
$ command < filename # take input from file
$ command >> filename # append output to file

The following code generates some data, and
Increments it:

#1/bin/bash
for number in $(seq 1 20);

do

let increment=$number+1;

echo "$number + 1 = $increment"
done

Notice that the value of the variable "number" is
$number

Say our input data was in a file :

$ seq 1 20 > count_to_twenty

We can read it from the file into the script with

#1/bin/bash
while read number
do
let increment=$number+1;
echo "$number + 1 = $increment"
done < count_to_twenty

1. writes the numbers 1..20 to file count_to_twenty
2. reads them sequentially into the variable number
3. increments them and writes to screen

PIPELINES

The pipe symbol is "|".
The sequence of operations

$ commandl > filename
$ command2 < filename
$ rm filename

can be replaced by

$ commandl | command2

The output of the first command is used as input to
the second.

The previous incrementing code is equivalent to the
pipeline

#1/bin/bash
seq 1 20 |
while read number
do
echo "$number + 1 = $(($number+1))"
done

@ AP LB

PIPELINE EXAMPLES WITH SOME
FILTERING

cat data_file | sort | unig # unig lines of an unsorted text file

cat data_file | sort | uniq -d # duplicate lines of unsorted text -
history | tail -n 100 # last 100 lines of history file

history | grep git | tail -n 100 # last 100 lines of history file col
ls -1t | awk '{print $5,"\t", $9}' | sort -rn|head # show directory col

#apply to 5th and 9th fields of 1ls -1t output, size and name

$

ls -1t | awk '{printf("%d\t%s\n",$5, $9)} | sort -rn # alternative fori

SED THE STREAM EDITOR

What's a stream editor? -
1. put the editing commands in one file,
2. apply them to any set of files

Note: sed uses regular expressions to match strings.

Contents of sed file, replace_string.sh:

#1/usr/bin/bash

replace all occurrences of $1 with $2 in files named *.$3
STRING=%$1

REPLACEMENT_STRING=%$2

FILETYPE=$3

find . -name '*.${FILETYPE}' -exec grep -1 $STRING {} \; #show files

find . -name '*.${FILETYPE}' -exec grep $STRING {} \; #show occurrenct
sed -e "S/$STRING/${REPLACEMENT_STRING}/g" *.${FILETYPE} {} \; #show r¢
sed -i.bak -e "s/$STRING/${REPLACEMENT_STRING}/g" *.${FILETYPE} {3} \; i
#find . -name '*.${FILETYPE}' -exec sed -i.bak -e "s/$STRING/${REPLACEI

e The -i does a live change. Leave it off and the
changes are sent to screen, not to file.

e Using -i.bak overwrites the file and copies the
original to a backup, to filename.bak

e The last line, uncommented, descends this
directory and finds all files of this filetype in all
subdirectories and makes this given substitution.

To replace the string "first" with the string "second" in
all csv files found in this directory:

$ chmod u+x replace_string.sh
$./replace_string.sh first second csv

TIPS

1. the echo command is your print statement
2. the "#" symbol is a comment
o document your code,
o comment out failing parts while you build it

up

CAVEATS

1. the bash shell treats single and double quotes
differently

2. some bash variables need to be either quoted or
enclosed in braces to be captured correctly

LINKS

e Software carpentry shell scripting
e system documentation

® $ man bash
B 3 help

® $ apropos your_term_here

= /usr/share/doc/ packages
» supplementary documentation packages: e.g.
gawk-doc

https://swcarpentry.github.io/shell-novice/06-script/index.html

LINKS CONTINUED

o Advanced bash scripting guide,
e download from abs on sourceforge

e iNt
Ste

ne beginning was the command line by Neal
ohenson - an early history of windows, Mac

daNnc

linux

https://tldp.org/LDP/abs/html/
http://localhost:8000/freshmeat.sourceforge.net/projects/advancedbashscriptingguide/
http://cristal.inria.fr/~weis/info/commandline.html

Thank you.

